

Dr. Sujata Persad 3-020 Katz Group Centre for Pharmacy & Health research E-mail:sujata.persad@ualberta.ca

Growth Factor Receptors and Other Signaling Pathways

What we will cover today:

- -How signaling proteins recognize upstream and downstream partners
- -How this process has been altered in cancer cells
- -Mechanisms of initiating signals through cellular GF receptors

Cell-Cell Communication

- Maintenance of tissue architecture (cell type, stage of differentiation, cell number)
- Response to stimuli or changes in the status quo
 - Control of cell growth (#)
 - Control of motility

Stomach epithelium: mucus-secreting cells

Figs 2-6C The Biology of Cancer (Garland Science 2007)

Turning on Proliferation in Normal Tissues

- Normal cells (and tissues) have capacity to proliferate (and to stop proliferating) when appropriate
- How is the decision to proliferate communicated?

Signal Transduction

Relay of signal from extracellular environment to interior of cell

- Relay very fast
- Usually through series of protein-protein interactions
- Frequently involves phosphorylation of signaling proteins
- Different messages use different pathways

Signaling Pathways

- <u>Growth factor receptors (GFRs)</u>: proliferation
- <u>Wnt/ β -catenin</u>: differentiation, proliferation
- Integrins: cell-cell contact, adhesion
- <u>NFKB</u>: proliferation, blocks apoptosis
- <u>Notch</u>: cell fate determination

Generic Signaling Pathway Ligand (extracellular) Receptor (cell surface) Series of signal transducers (cytoplasmic) Transcription factors (nuclear) Gene targets (nuclear)

Growth Factor Receptor Signaling Pathway(s)

Autocrine, Paracrine and Endocrine Signals

Refer to signaling paths of hormones or factors released by one cell and acting upon:

- the same cell ?
- a nearby cell in the same tissue -?
- a cell in a distant tissue ?

Initiation of the Proliferation Signal in Normal Tissues

- Growth factors (GFs): proteins released by one cell that signal to another cell (target cell) that it is time to divide
- Receptor on target cell = sensor (detects growth factors in the extracellular environment)
- Receptor transfers information membrane from growth factor to interior of cell

interior of

target cell

Activation of Growth by PDGF Signaling Pathway in Normal Cells

- Platelet derived growth factor (PDGF): potent attractant and *mitogen** for fibroblasts
- Wounding assay (normal cells): monolayer of fibroblasts, before (L) and after (R) PDGF
- Bottom: same, except cells are PDGF receptornegative

**Mitogen*: an agent that induces cell proliferation

Figure 5-4a The Biology of Cancer (© Garland Science 2007)

Initiation of the Proliferation Signal in Normal Tissues (cont'd)

- Growth factors (GFs): proteins released by one cell that signal to another cell (target cell) that it is time to divide
- Receptor on target cell = sensor (detects growth factors in the extracellular environment)
- Receptor transfers information membrane from growth factor to interior of cell

Figs 5-12 The Biology of Cancer (Garland Science 2007)

interior of target cell 1

Growth Signaling in Normal Cells: Phosphorylation of Receptors

- Certain amino acids within proteins can be modified by covalent attachment of phosphate group (PO₄): phosphorylation alters activity
- *Kinases*: enzymes that catalyze phosphorylation
- Most protein phosphorylation at serine and threonine
- Phosphorylated tyrosine (p-tyr) rare: first identified in studies with Src

Figure 5-7a The Biology of Cancer (© Garland Science 2007)

Growth Signaling in Normal Cells: Tyrosine Phosphorylation

- P-Tyr: mitogenic signal
- GFRs frequently have tyrosine kinase activity
- Tyrosine phosphorylation occurs extremely quickly after exposure to growth factors
- Receptor itself frequently phosphorylated on tyrosine

Figure 5-13 The Biology of Cancer (© Garland Science 2007)

Blue: overexpression of pTyr-EGFR; red: underexpression

14

Receptor Tyrosine Kinase Families

Structure of RTK families

Figure 5-10 The Biology of Cancer (© Garland Science 2007)

How Are Receptors Activated?

Simple Dimerization Model for Receptor Activation

- GF dimer binds to receptor monomer
- Complex moves through membrane until it encounters another receptor monomer
- GF dimer acts as bridge to dimerize the receptor
- Dimerization induces phosphorylation of Tyr on receptor
- Catalytic site in TK domain exposed, allowing access to substrates (the next contact in the signal relay) and/or other sites on receptor partner

Figure 5-15 The Biology of Cancer (© Garland Science 2007)

Mechanisms of Disrupting Controlled Growth Factor Signaling in Cancer..... At the Level of the Receptor GF Interaction

Autocrine Signaling

- Cancer cells release growth factors into immediate extracellular environment
- GF binds to receptors on same or neighboring cells

Autocrine Growth Loops in Tumor Cells

- Dangerous for tissue organization: cell controls its own proliferation independent of normal growth signals
- How?
 - Cell type naturally expresses the GF receptor: during transformation, growth factor gene activated
 - Or converse: receptor expression activated in cells already producing the growth factor

Autocrine Signaling in Breast Cancer

Successive sections of invasive human breast cancer stained for

- Red: epidermal growth factor receptor (EGFR)
- Green: ligand of EGFR (TGF- α)
- Cells that express <u>both</u> receptor and ligand appear yellow when images superimposed

Figure 5-12c The Biology of Cancer (© Garland Science 2007) 21

Autocrine GFs Produced by Many Types of Human Tumors

- PDGF produced by some sarcomas (PDGF-R normally on fibroblasts)
- >1 autocrine growth loop possible: extreme case: Kaposi's sarcoma tumors
 - 7 different cellular GFs and their receptors
 - GFs for two additional autocrine loops contributed by HHV-8 (the virus associated with Kaposi's sarcoma)

Growth Factor-Independent Signaling

- Mutations that enhance dimerization lead to enhanced signaling, such as...
- 1. Higher concentration of GFRs on surface of cancer cells than on normal cells
 - Elevated transcription
 - Gene amplification
 - Decreased cycling away from surface
- 2. Structural alterations in GFR

Deregulation of Receptor Firing

> Mutations (fusions, deletions, point mutations) in receptor protein

Figure 5-12a The Biology of Cancer (© Garland Science 2007)

Gene Fusion Causing Constitutively Dimerized Receptors in Tumor Cells

- Fusion of TK domain of receptor genes (black type) to unrelated genes encoding proteins that normally form dimers or oligomers (pink type)
- Hybrid protein dimerizes with itself, relays signal

Figure 5-17 The Biology of Cancer (© Garland Science 2007)

Signal Transducers in Normal Cells

Growth, motility, survival

How are Signals Relayed from receptor-GF to Intracellular Destination?

Signal Relay

- Intracellular protein docks on activated receptor
- Intracellular protein relays the signal to next partner

Src Kinase as Model for Signal Transducing Molecule

Figure 6-7a The Biology of Cancer (© Garland Science 2007)

Structure of Src protein

1

SH2 Interacts with p-Tyr Proteins

- >100 distinct SH2 domains, each part of different protein
 - All SH2 domains bind p-Tyr followed by 3-6 amino acids embedded within partner protein at its C-terminal site
 - Each SH2 domain specific for different set of 3-6 amino acids
- SH2 domains found on variety of signaling proteins always in combination with other domains
- > SH2 is independent module

SH2 domain

Docking of Signal Transducing Proteins on pTyr-Receptors

- SH2-containing proteins home to activated receptor at specific sites
- SH2-containing proteins tethered to receptor might be substrates for the RTK, and/or
- Localization may be more important: tethered SH2 proteins interact with other membrane-associated proteins or phospholipids at higher rate than if they weren't in close proximity

32

SH3 Domain Interactions

- > 250 genes encode proteins with SH3 domains
- SH3 domains bind to prolinerich sequences in partner proteins
- SH3 acts as independent module

Protein Interaction Domains as Modules

- Most signaling molecules interacting with RTKs have >1 SH2 domain (some also have >1 SH3 domain)
- Some signaling molecules have enzyme activities
- Some have no catalytic function and act as bridges (*adaptor* proteins)

Rectangles: protein-protein binding modules; Oblongs: catalytic domains

Binding Domains Associated with Mitogenic Signals

Name of domain	"Ligand"
SH2	pTyr plus 3-6 amino acids at C- terminal side
PTB	pTyr plus 3 amino acids at the N- terminal side
SH3	proline-rich
14-3-3	phosphoserine
Bromo	acetylated lysine
PH (pleckstrin homology)	membrane phospho-inositides (eg, PIP3)

Early Steps of Mitogen Signaling Pathway

 Grb2 and Shc are adaptors linking receptors to the next signal in relay

Figure 6-12b The Biology of Cancer (© Garland Science 2007)

Ras

Ras

SH3

SH3

Sos

P SH2

Shc

Ras Activation is Controlled by a Binary Switch

Figure 5-30 The Biology of Cancer (© Garland Science 2007)

GDP = inactive GTP = active GTP-bound Ras Transmits Signal to downstream partners.

Activated Ras Structure

- GTP-bound Ras exposes effector loop for binding to downstream partners
- Binding to Ras tethers partners to membrane and/or induces conformational changes in partners that activates them

Ras Signaling can be Relayed down Three Different Pathways

Mitogen Activated Protein Kinase (MAPK) Signaling Pathway

- MAPK pathways highly conserved (not just proliferation signal)
- 3-tiered signaling unit
- Raf is a ser/thr kinase
- MEK is a dual-specific kinase (both ser/thr and tyr are substrates)

The MAP Kinase Pathway

Activities of Erk

- Phosphorylates cytoplasmic substrates
- Translocates to the nucleus and phosphorylates transcription factors (Ets, Elk-1, SAP-1)
- Phosphorylates a kinase that in turn activates protein synthesis machinery
- Phosphorylates other downstream kinases that activate transcription factors
 - TFs activate growth promoting genes and contribute to anchorage independence

Ras Pathway Controlling Inositol Lipids and Akt/PKB Kinase

Inositol Lipids and Mitogenic Signaling

 Phospholipids can have more than just structural function in membrane: cytoplasmic "head" of phospholipid can bind inositol

 Release of phosphorylated inositol (IP₃) from the membrane: intracellular signaling ("second messenger") but also...

Inositol Lipids and Mitogenic Signaling (cont'd)

- Phosphorylation by PI3 kinase generates PIP₃ which remains in membrane
- PI3 kinase activity enhanced by Ras binding
- PIP₃ acts as anchor for certain proteins to bind to plasma membrane

Docking of PH Domain of Akt/PKB to PIP_3

Figure 6.19a The Biology of Cancer (© Garland Science 2007)

PI3 Kinase Pathway

The PI-3Kinase Pathway

> PTEN mutation is linked to numerous cancers

What does Akt/PKB do?

- Inhibits pro-apoptotic proteins by phosphorylating them
 - \rightarrow prevents apoptosis
- Inhibits anti-proliferative proteins by phosphorylating them
 - Causes cells to divide

 \rightarrow stimulates protein synthesis

The Ras-regulated Ral Pathway

Signaling Directly from Plasma Membrane to Nucleus

Signaling From Cell Adhesion Receptors

Integrin Signaling

Cell Adhesion Receptor and GFR Signals Converge

How can cells keep their signals straight?

Why do different cells behave so differently if they use the same signaling pathways??

- Different spectrum of receptors on each cell
- Similar but non-identical forms of many signaling proteins (e.g., multiple ras genes)
- Multiple concurrent signaling pathways (cell type specific?)
- Positive and negative feedback loops modulate flux of signal (over 100 phosphatases (remove phosphates from pTyr proteins) that we know little about)
- Intracellular diffusion rates & locations of signaling molecules important but not understood
- The whole process is *dynamic*

Modulating the Signal

- Localization
- Concentration
- Activity (by dimerization, GTP binding, phosphorylation, proteolytic cleavage) of signaling molecules can be used to regulate and fine tune the signal
- Essentially all 3 of these are dysregulated in cancer

Summary

- Growth factors bind receptors, induce signal to divide
- Proliferation signal frequently controlled by receptor tyrosine kinases (RTKs)
- Most RTKs dimerize to transmit signal
- Hyperactive growth signaling common in cancer: overexpression of GFs or GFRs, mutation in GFR proteins
- Targets of mitogenic signaling are genes involved in growth and differentiation, and proteins important for motility, metabolism, and protein synthesis
- SH2 domains in signal transducers bind specific pTyr sites in signaling partners; SH3 domains bind prolinerich regions
- Kinases important in many signaling pathways
 Each cell uses multiple signaling pathways to control proliferation
- Activation of signaling pathways associated with many kinds of cancer